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Why THz Pulses?Why THz Pulses?
1 THz = 1012 Hz ; λ = 300 µm, ν = 33 cm-1

• Ultra-fast dynamics (< 1 ps time scale)
– electronic excitations
– magnetic excitations

• Low frequency, non-linear properties of materials
– vibrational modes (local phonon modes)
– electronic modes (nanoparticles / quantum dots)

• Structural transitions
– Large E-field to coherently “shove” atoms

• Imaging
– non-ionizing
– crossroads between depth of penetration, chemical info.
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Pulsed THz Source RequirementsPulsed THz Source Requirements
• Broad spectral content (up to at least 3 THz)

• Peak E-field approaching 1 MV/cm

• Tailored waveform
– “Half-cycle’ pulse, other

• Two colors
– a tunable, low energy pump pulse

– similar or even lower energy spectroscopic probe pulse

• Sufficient average power for imaging large areas at high
(video) rates.
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THz Imaging:  Absorption in Common Dielectric MaterialsTHz Imaging:  Absorption in Common Dielectric Materials
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Energy/Power for “Table Top” THz PulsesEnergy/Power for “Table Top” THz Pulses

• Multiparticle (N2) coherent enhancement (spotsize smalller than diff. limit).
• Typical energies per pulse are ~ 1 nJ from a conventional photoconductive switch and an

amplified, 250 kHz rep rate drive laser.

• Optical rectification output is similar, but extends spectra to higher frequencies.

• Higher peak power lasers (at or below 1 kHz rate) and biased antenna structures have
enabled 1 µµµµJ.  (You et al, Opt. Lett. 18, 290 (1993), Budiarto et al, J. Quant. Elect. 32, 1839 (1996).

• Recently, Riemann et al [Opt. Lett. 28, 471 (2003)] demonstrated multi-cycle mid-IR
(~ 800 cm-1 = 24 THz) pulses with E-field of 1 MV/cm. (mixing in GaSe)

THz pulseSub-picosecond
laser pulse

GaAs

Radiation from acceleration of photocarriers.
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Energy = 6x10-32 J per electron in 1 ps
106 V/m =>     ~ 1019 cm/s2a

or 10-32 J/cm-1/electron
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Transition Radiation from Relativistic ElectronTransition Radiation from Relativistic Electron
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Transition radiation occurs when an
electron crosses the boundary between
two different media.  For a relativistic
electron (β ≡ v/c ≅  1) incident on a
perfect conductor, the number of
photons emitted per solid angle and
wavelength range is:

Intensity is 0 on axis, peaks at θ ~ 1/γ.

Polarization is radial
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Multi-particle Coherent Synchrotron Radiation (CSR)Multi-particle Coherent Synchrotron Radiation (CSR)

• What are requirements for CSR from electrons in a bunch?
– bunch (or some portion of it) has density variations on length scale comparable to

wavelength.
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In some accelerators, bunch lengths are 100s of fs (=>THz), and N can be large e.g. ~ 1010 
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Coherent Synchrotron Radiation (CSR)Coherent Synchrotron Radiation (CSR)

– 1st observations in linacs:
• Nakazato et al (PRL ‘89), Happek et al (PRL ‘91)

– As a linac bunch diagnostic:
• Shibata et al (PRE ‘94), Lai et al (PRE ‘94), Yan et al (PRL ‘00)

– As a THz source
• Ishi et al (PRA ‘91), Takahashi et al (RSI ‘98), Carr et al., (Nature ‘02)

– CSR also from storage rings
• Arpe et al, Carr et al, Anderson et al, Abo-Bakr et al. ...
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Coherent Transition Radiation Pulses from the SDL LinacCoherent Transition Radiation Pulses from the SDL Linac
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StatisticsStatistics

• Shot-to-shot fluctuations affect
pulse usefulness for some
applications.

– Interferometry

– Pump-probe spectroscopy

• Typical fluctuations 4 to 6% RMS.

– due mostly to variations in
charge (particle number).

• High rep. rate (average) or single-
shot capability needed. 0 10 20 30 40
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Electro-Optic THz Pulse Detection SetupElectro-Optic THz Pulse Detection Setup

CCD

ZnTe AnalyzerPolarizer

Lens

Electron Beam

Vacuum Window

Paraboloid

Synchronized
Ti:sapphire Laser Coupling Hole, 2 mm

EO Detection method:
T.F. Heinz/Columbia & X.-C. Zhang/Rensselaer 

Accelerators: 
Yan, Van der Meer et al PRL 2000
Wilke et al PRL 2002
Loos et al PAC 2003

Chirped sampling: 
Jiang and Zhang, APL (1998)
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THz and Sampling Laser Beam PathTHz and Sampling Laser Beam Path
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Electro-Optic THz Detection with λλλλ/4Electro-Optic THz Detection with λλλλ/4

Synchronized
Ti:sapphire Laser

CCD

ZnTe AnalyzerPolarizer

Lens

Electron Beam

Vacuum Window

Paraboloid

Coupling Hole, 2 mm λ/4
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Signal and ReferenceSignal and Reference
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This E-field is too large for 500 µm ZnTe
(E > 170 kV/cm yields > λ/4 phase shift)

=> Reduce compression, lower charge
to get “on-scale”
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Focusing a 100 µµµµJ pulse, 1 THz (nominal) pulse into a 1 mm3 volume yields an
energy density of  105J/m3 , so that E = [2DE

/ε0]1/2 ~ 108 V/m (~ 1 MV/cm).

At 1 MV/cm, the magnetic field (B=E/c) is 3 kG.

EO Detection of SDL Linac Coherent THz PulsesEO Detection of SDL Linac Coherent THz Pulses
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Temporal E-Field Cross Section at FocusTemporal E-Field Cross Section at Focus

E-field along horizontal plane

Note: opposite sides are
asymmetric, as shown

(radial polarization)

Measurement

Calculation (m
m)

Temporal-spatial E-field profile of coherent
transition radiation pulse at ~ f/1.5 focus
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What Can We Do with these THz Pulses?What Can We Do with these THz Pulses?

� Use THz pulses as the pump (excitation) source in “all THz”
pump probe experiments.

� Study non-linear absorption is a variety of materials,
including nanoparticles / quantum dots.

� Induce coherent current excitations

� Move atoms in their local potential wells

� Orient spins in magnetic systems.
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Photoexcitation in a BCS SuperconductorPhotoexcitation in a BCS Superconductor

Step 1:
Photons (a pulse from
near-IR laser) break pairs,
creating high energy
“quasiparticle” excitations.

Photon energy 1.5 eV.

∆
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∆’

excess
quasiparticles

Step 2: 
High energy quasiparticles 
scatter and relax toward gap
edge.  Many more pairs broken
in this process (multiplication).

Weakened superconducting
state appears as reduced gap;
∆’=∆-δ .

Note: Quasiparticle density is out of 
equilibrium, but energy distribution is 
approximately thermalized.
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∆’

Step 3: 
Excess quasiparticles recombine
to form pairs and gap is restored
to full value. 

Relaxation time for thin films of
BCS-type superconductors  is
~ 1 ns.
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New Experiment:
Use narrow-band, low energy pump
to impose non-thermal initial
distribution, probe with broadband
pulse (spectroscopy).

How do these quasiparticle relax
toward gap edge.  How does this
population affect the overall
superconducting state and the
energy gap?
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Pump-Probe THz Spectroscopy of a d -wave SuperconductorPump-Probe THz Spectroscopy of a d -wave Superconductor

Near-IR laser excitation 
and fast initial relaxation

J. Orenstein et al, PRL UC Berkeley
P.J. Hirschfeld et al, PRB U. Florida

τθ >> τradial 

τradial

τθ

Narrow-band THz excitation 
to limit starting population energy

Goal: study τrelax as a function
of Epump (pump photon energy)

kx

ky

kx

kyT<<TC
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THz Pulse-driven Superfluid ExcitationsTHz Pulse-driven Superfluid Excitations

• Can a THz pulse induce currents that exceed the critical current in a
superconductor?
– A new type of transient excitation (avoids complicated heating effects for a DC

experiment).

– What does this superconductor look like?  Is there any evidence for an energy gap or
other indication of superconductivity?

– How does it recover/relax?

• Estimates for the necessary E-field:
– E = J/σ = 108 A/cm2 /1000 [Ω-cm]-1 = 105 V/cm or 100 kV/cm.

• Experiment: Pump with high field THz pulse (low pass filter), probe with
lower intensity, broader spectral coverage pulse.
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Dynamics of Charge / Spin Stripes in OxidesDynamics of Charge / Spin Stripes in Oxides

Tranquada et al., Nature (1995)

Stripes not visible in many materials: dynamic fluctuations?
Can a high-field, half-cycle THz pulse temporarily induce a preferred orientation?
Goal: THz pump, polarized THz probe to sense induced anisotropy & relaxation.

J E Hoffman et al. 2002 Science 295 466

Requirements:

Intense source of half-cycle E-field THz pulses (how big?)

THz spectroscopy probe (polarized)
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THz Driven Magnetic DynamicsTHz Driven Magnetic Dynamics

10-10 - 10-9Precessional motion

TBDSpin coherence
TBDSpin diffusion
TBDSpin injection

10-12 - 10-11 (in manganites)Spin – lattice relaxation
10-12 (low q limit)Spin waves
10-15 - 10-14Stoner excitations
10-15Exchange interaction
Timescale (sec)Excitation / Interaction

Soft Ferromagnet Dynamics Time-resolved MOKE on permalloy strip. B.C. Choi et
al.,PRL 86, 728, (2001)

Other systems of interest:  Dilute Mag. Semiconductors, Manganites.

Use ultra-short magnetic field pulses to induce spin excitations (D. Arena / NSLS)
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Opportunities in Magnetism with THz PulsesOpportunities in Magnetism with THz Pulses

magnetic
viscosity

field
(gauss)

Ultra-Short Pulses and/or High Fields -- D. Arena / NSLS
Current state of the art for “ultra-fast” dynamics experiments: 
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Time: ~100 fs (lasers)
~100 ps (synchrotron)

Field: ~10 – 100 gauss (stripline)
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Soft Modes in Ferroelectrics & Perovskites (PbTiO3)Soft Modes in Ferroelectrics & Perovskites (PbTiO3)

Use half-cycle pulse to coherently drive
atoms, probe motion as a function of
time (needs diffraction probe).
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Observe “shift” in diffraction spot(s) 

DOE Workshop on Ultrafast X-rays
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SummarySummary
• Per particle, relativistic electrons offer a significant intensity/energy

advantage over conventional pulsed THz sources.
– 80 µJ per pulse, E-field approaching 1 MV/cm demonstrated at DUV-FEL/SDL.
– High pulse energy should be sufficient to create novel coherent excitations in solids.
– Radial polarization of transition radiation may be useful for coupling into coaxial guides.

• Characteristics compatible with EO detection methods.
– Necessary for coherent imaging technique
– Single-shot spectroscopy (chirped sampling pulse) desirable.

• Spectral content determined by electron beam density.
– Can we make two colors?  What shapes can be achieved?

• Existing accelerators producing coherent THz pulses were not designed
for this purpose.

– Opportunity to optimize parameters for greatest flexibility versus cost/size.
– Shortest achievable bunch length versus charge, versus energy?


